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Nondeterministic density classification with diffusive probabilistic cellular automata

Henryk Fukś*
Department of Mathematics, Brock University, St. Catharines, Ontario, Canada L2S 3A1

~Received 30 July 2002; published 9 December 2002!

We present a probabilistic cellular automaton~CA! with two absorbing states which performs classification
of binary strings in a nondeterministic sense. In a system evolving under this CA rule, empty sites become
occupied with a probability proportional to the number of occupied sites in the neighborhood, while occupied
sites become empty with a probability proportional to the number of empty sites in the neighborhood. The
probability that all sites become eventually occupied is equal to the density of occupied sites in the initial
string.
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I. INTRODUCTION

Cellular automata~CA! and other spatially extended dis
crete dynamical systems are often used as models of c
plex systems with a large number of locally interacting co
ponents. One of the primary problems encountered
constructing such models is the inverse problem: the qu
tion of how to find a local CA rule which would exhibit th
desired global behavior.

As a typical representative of the inverse problem,
so-called density classification task@1# has been extensivel
studied in recent years. The CA performing this task sho
converge to a fixed point of all 1’s if the initial configuratio
contains more 1’s than 0’s, and to a fixed point of all 0’s
the converse is true. While it has been proved@2# that the
two-state rule performing this task does not exist, solutio
of modified tasks are possible if one allows more than o
CA rule @3#, modifies specifications for the final configur
tion @4#, or assumes different boundary condition@5#. Ap-
proximate solutions have been studied in the context of
netic algorithms in one@6# and two dimensions@7#.

In what follows, we will define a probabilistic CA which
solves the density classification problem in the stocha
sense, meaning that the probability that all sites beco
eventually occupied is equal to the density of occupied s
in the initial string.

We will assume that the dynamics takes place on a o
dimensional lattice with periodic boundary conditions. L
si(k) denotes the state of the lattice sitei at time k, where
i PZ, kPN. All operations on spatial indicesi are assumed
to be moduloL, whereL is the length of the lattice. We wil
further assume thatsi(k)P$0,1%, and we will say that the
site i is occupied~empty! at timek if si(k)51 @si(k)50#.

The dynamics of the system can be described as follo
empty sites become occupied with a probability proportio
to the number of occupied sites in the neighborhood, wh
occupied sites become empty with a probability proportio
to the number of empty sites in the neighborhood, with
lattice sites updated simultaneously at each time step
be more precise, let us denote byP@si(k
11)usi 21(k),si(k),si 11(k)# the probability that the site
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si(k) with nearest neighborssi 21(k),si 11(k) changes its
state tosi(k11) in a single time step. The following set o
transition probabilities defines the aforementioned CA ru

P~1u0,0,0!50, P~1u0,0,1!5p,

P~1u0,1,0!5122p, P~1u0,1,1!512p,

P~1u1,0,0!5p, P~1u1,0,1!52p,

P~1u1,1,0!512p, P~1u1,1,1!51, ~1!

wherepP(0,1/2# @the remaining eight transition probabil
ties can be obtained usingP(0ua,b,c)512P(1ua,b,c) for
a,b,cP$0,1%]. The probabilistic CA defined by Eq.~1! can
be defined explicitly if we introduce a set of iid rando
variables $Xi% i 50

L with probability distribution P(Xi51)
5p, P(Xi50)512p, and another set$Yi% i 50

L with prob-
ability distribution P(Yi51)52p, P(Yi50)5122p. Dy-
namics of the rule~1! can then be described as

si~k11!5Xi~12si 21!~12si !si 111~12Yi !~12si 21!si

3~12si 11!1~12Xi !~12si 21!sisi 111Xisi 21

3~12si !~12si 11!1Yisi 21~12si !si 11

1~12Xi !si 21si~12si 11!1si 21sisi 11 . ~2!

To make the above formula easier to read, we omitted
time argument, denotingsi(k) by si . After simplification and
reordering of terms, we obtain

si~k11!5si2siYi1Xisi 211Xisi 111~si 21si1sisi 11

22si 21sisi 111si 21si 11!~Yi22Xi !. ~3!

II. DIFFERENCE AND DIFFERENTIAL EQUATIONS

The state of the system at the timek is determined by the
states of all lattice sites and is described by the Bool
random fields(k)5$si(k): i 50, . . . ,L%. The Boolean field
$s(k):k50,1,2, . . . % is then a Markov stochastic proces
Denoting byEs(0) the expectation of this Markov proces
when the initial configuration iss(0) we will now define the
expected local density of occupied sites byr i(k)
©2002 The American Physical Society06-1
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5Es(0)@si(k)#. The expected global density will be define
as

r~k!5L21(
i 50

L

r i~k!. ~4!

While bothr i(k) andr(k) depend on the initial configura
tion s(0), wewill drop this dependence to simplify notation
We will assume that the initial configuration is exact
known ~nonstochastic!, hencer(0)5( i 50

L si(0) is the frac-
tion of initially occupied sites.

Taking expectation value of both sides of Eq.~3!, and
taking into account thatEs(0)@Yi22Xi #50, we obtain the
following difference equation

r i~k11!5r i~k!1p„r i 11~k!1r i 21~k!22r i~k!…. ~5!

After summing over all lattice sites this yields

r~k11!5r~k!, ~6!

which means that the expected global density should be
stant, independently of the value of parameterp and indepen-
dently of the initial configurations(0). We cantherefore say
that the probabilistic CA defined in Eq.~2! is analogous to
conservativeCA, i.e., deterministic CA which preserve th
number of occupied sites@8–11#.

Note that up to now we have not made any approxim
tions, i.e., both Eqs.~5! and~6! are exact. We can, howeve
consider limiting behavior of Eq. (5) when the physical d
tance between lattice sites and the size of the time step
multaneously go to zero, using a similar procedure as
scribed in Ref.@12#. Let x5e i andt5tk. Now in Eq.~5! we
can replacer( i ,k) by r(x,t), r( i 61,k) by r(x6e,t), and
r( i ,k11) by r(x,t1t), which results in the following
equation:

r~r ,t1t!5r~x,t !1p„r~x1e,t !1r~x2e,t !22r~x,t !….

We will consider diffusive scaling in which time scales as
square of the spatial length, meaning thatt5e2. Taking Tay-
lor expansion of the above equation in powers ofe up to the
second order we obtain

] tr5p]x
2r, ~7!

i.e., the standard diffusion equation. Due to the form of E
~7!, in what follows we will refer to the process defined
Eq. ~2! asdiffusive probabilistic cellular automaton~DPCA!.

III. ABSORPTION PROBABILITY

We will now present some simulation results illustrati
dynamics of DPCA. Since main features of DPCA rema
qualitatively the same for all values of the parameterp in the
interval (0,1/2), we have chosenp50.25 as a representativ
value to perform all subsequent simulations.

Let N(k)5( i 51
L si(k) be the number of occupied sites

time k. If we start with N(0)50, thenN(k)50 for all k
.0. Similarly, if N(0)5L, thenN(k)5L for all k.0. The
06610
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DPCA has thus two absorbing states, corresponding to
empty sites~to be referred to as0) and to all occupied sites
~to be referred to as1). If we start with 0,N(0),L, then
the graph ofN(k) resembles a random walk, as shown
Fig. 1. Both sample trajectories shown there eventually
in the absorbing state, one of them in0, another one in1.
This is a general property of the DPCA: regardless of
initial configuration, the system sooner or later ends up
one of the two absorbing states. Although the time requi
to reach the absorbing state can be large for a given rea
tion of the process, the expected value of the number of t
steps required to reach the absorbing state is finite, as it is
case for all finite absorbing Markov chains@13#. Figure 2
illustrates this property forL5100 and the initial configura-
tion with 30 occupied sites clustered around the center,
located ati 535,36, . . . ,64. All other sites are empty. We
start with an assembly of 200 of such initial configuration
all plotted as vertical lines in which black pixels represe
occupied sites, while white pixels represent empty sites, a
Fig. 2~a!. Each of these initial configurations evolves acco
ing to the DPCA rule, and afterk5100 (k51000) iterations
they are again plotted as 200 vertical lines in Figs. 2~b! and
2~c!. After 12 000 iterations all 200 configurations reach a
sorbing states, as illustrated in Fig. 2~d!. Obviously, some
reach the state1, while others0, yet it turns out that the
fraction of configurations which ended up in the state1 is
very close to 30%, the same as the fraction of occupied s
at k50.

To explain this phenomenon, let us defineuN(k) to be the
probability that the number of occupied sites at timek is N.
Since the Markov process$s(k):k50,1,2, . . . % is finite and
absorbing, no matter where the process starts, the probab
that afterk steps it is in an absorbing state tends to 1 ak
tends to infinity@13#. This implies that

lim
k→`

uN~k!50 if NÞ0 and NÞL, ~8!

lim
k→`

„uL~k!1u0~k!…51. ~9!

FIG. 1. Fraction of occupied sitesN(k)/L as a function of time
k for two sample trajectories starting from identical initial config
ration with N(0)530, L5100, p50.3. The third, almost horizon-
tal line represents average of 1000 such trajectories.
6-2
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The expected global density, as defined in Eq.~4!, is inde-
pendent ofk, hence

r~0!5L21Es(0)@N~k!#5L21 (
N51

L

NuN~k!. ~10!

Taking the limitk→` of both sides of the above equatio
and using Eqs.~8! and ~9!, we obtain

lim
k→`

uL~k!5r~0!, ~11!

lim
k→`

u0~k!512r~0!. ~12!

We have shown thatthe probability that the DPCA reache
the absorbing state1 is equal to the initial fraction of occu-
pied sites r(0). The probability that it reaches0 is 1
2r(0). This is in agreement with the behavior observed
Fig. 2.

The above can be viewed as a probabilistic generaliza
of the density classification process. In the standard~deter-
ministic! version of the density classification problem w

FIG. 2. Multiple realizations of the CA evolution at~a! k50,
~b! k5100, ~c! k51000, and~d! k512 000. Each vertical line
corresponds to different realizations of the process onL5100 lat-
tice. Black pixels represent occupied sites and white pixels em
sites. 200 different realizations of the process are shown.
06610
n

seek a CA rule which would converge to1 (0) if the fraction
of occupied sites in the initial string is greater~less! than 1/2,
i.e.,

lim
k→`

uL~k!5Q„r~0!…, ~13!

lim
k→`

u0~k!5Q„12r~0!…, ~14!

where Q(•) is the step function defined asQ(x)50 if x
<1/2, andQ(x)51 if x.1/2. Thus the difference betwee
the deterministic and the probabilistic density classificat
introduced here is the replacement of the step function
Eqs.~13!–~14! by the identity function in Eqs.~11!–~12!.

As opposed to deterministically decided outcome in
standard density classification process, in DPCA it is j
more probablethat the system reaches1 then0 if the fraction
of occupied sites in the initial string is greater than 1/2, a
it is more probablethat it reaches0 then1 if the converse is
true. Additionally, DPCA can in some sensemeasureconcen-
tration of occupied sites in the initial string. If we want t
know what is the initial density of occupied sites, we need
run DPCA many times with the same initial condition until
reaches the absorbing state, and observe how frequen
reaches1. This frequency will approximateN(0)/L, with
accuracy increasing with the number of experiments.

IV. TIME TO ABSORPTION

Simulations shown in Fig. 2 indicate that for largek the
system is typically in a state in which blocks of both emp
and occupied sites are relatively long. We can use this ob
vation to obtain the approximate dependence of the time
quired to reach the absorbing state on the density of in
configuration.

If we assume that in a given configuration all occupi
sites are grouped in a few long continuous blocks, then
value ofN(k) cannot change too much in a single time ste

FIG. 3. The average time required to reach the absorbing s
^T& as a function of the initial densityr(0)5N(0)/L for L5100,
p50.3. Each data point (1) represents the average taken ov
1000 realizations of the process with identical initial configuratio
The continuous line represents fitted parabola^T&5ar(0)„1
2r(0)….

ty
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HENRYK FUKŚ PHYSICAL REVIEW E 66, 066106 ~2002!
For simplicity, let us assume that the only allowed values
DN(k)5N(k11)2N(k) are$22,21,0,1,2%.

Sincer(k) is time independent, the probability thatN(k)
increases by a given amount should be equal to the prob
ity that it decreases by the same amount in a single time s
In the agreement with the above, let us definepj as the
probability thatDN(k) takes the valuej, so thatpj is non-
zero for j P$22,21,0,1,2%, wherep225p2 , p215p1, and
2p212p11p051. If Tz denotes the expected time to rea
the stateN(k)50 or N(k)5L starting from N(0)5z, a
simple argument@14# yields the difference equation whichTz
must satisfy

Tz5p2Tz121p1Tz111p0Tz1p1Tz211p2Tz2211.
~15!

The solution of this equation satisfying boundary conditio
T050 andTL50 is given by

Tz5a z~L2z!5a L2r~0!„12r~0!…, ~16!

wherea51/(8p214p1), meaning that the mean time to a
sorption scales with lattice length asO(L2). The above re-
sult would remain valid even if we allowed further jump
than 62 ~although the form of the coefficienta would be
different!.

In order to verify if this result holds for the DPCA, w
performed a series of numerical experiments, computing
h

v.

.

m
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average time required to reach the absorbing state for 1
realizations of the DPCA process, for a range of initial de
sities. Results are shown in Fig. 3. One can clearly see
data points are aligned along a curve of parabolic shape
expected from Eq.~16!.

V. CONCLUSION

The probabilistic CA introduced in this article solves th
density classification problem in a nondeterministic sense
is interesting to note that the DPCA conserves the aver
number of occupied sites, similarly as deterministic ru
employed in solutions of related problems mentioned in
introduction. Indeed, conservation of the number of occup
sites is a necessary condition for density classification by
if one allows modified output configuration, as recen
shown in Ref.@15#. This suggests that a wider class of prob
bilistic CA conservingr(k) might be a useful paradigm in
studying how locally interacting systems compute glob
properties, and certainly deserves further attention.
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